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Abstract  

Background 

 Previous studies suggest central nervous system involvement in chronic fatigue 
syndrome (CFS), yet there are no established diagnostic criteria. CFS may be difficult to 
differentiate from clinical depression. The study’s objective was to determine if spectral 
coherence, a computational derivative of spectral analysis of the electroencephalogram 
(EEG), could distinguish patients with CFS from healthy control subjects and not 
erroneously classify depressed patients as having CFS. 

Methods 

 This is a study, conducted in an academic medical center electroencephalography 
laboratory, of 632 subjects: 390 healthy normal controls, 70 patients with carefully 
defined CFS, 24 with major depression, and 148 with general fatigue. Aside from fatigue, 
all patients were medically healthy by history and examination.  EEGs were obtained and 
spectral coherences calculated after extensive artifact removal. Principal Components 
Analysis identified coherence factors and corresponding factor loading patterns.  
Discriminant analysis determined whether spectral coherence factors could reliably 
discriminate CFS patients from healthy control subjects without misclassifying 
depression as CFS. 

Results 

 Analysis of EEG coherence data from a large sample (n=632) of patients and 
healthy controls identified 40 factors explaining 55.6% total variance.  Factors showed 
highly significant group differentiation (p<.0004) identifying 89.5% of unmedicated 
female CFS patients and 92.4% of healthy female controls. Recursive jackknifing showed 
predictions were stable.  A conservative 10-factor discriminant function model was 
subsequently applied, and also showed highly significant group discrimination (p<.001), 
accurately classifying 88.9% unmedicated males with CFS, and 82.4% unmedicated male 
healthy controls. No patient with depression was classified as having CFS. The model 
was less accurate (73.9%) in identifying CFS patients taking psychoactive medications. 
Factors involving the temporal lobes were of primary importance.  

Conclusions 

 EEG spectral coherence analysis identified unmedicated patients with CFS and 
healthy control subjects without misclassifying depressed patients as CFS, providing 
evidence that CFS patients demonstrate brain physiology that is not observed in healthy 
normals or patients with major depression. Studies of new CFS patients and comparison 
groups are required to determine the possible clinical utility of this test. The results 
concur with other studies finding neurological abnormalities in CFS, and implicate 
temporal lobe involvement in CFS pathophysiology. 
 

Background  
 
 Fatigue is one of the most common presenting complaints, accounting for a 10-
25% prevalence of patients presenting to primary care physicians (PCP) [1]. The 
extensive differential diagnosis of fatigue encompasses a wide spectrum of illnesses 



 - 3 - 

including, but not limited to endocrine disorders, infections, cancer, medication side 
effects, sleep disorders, seizures, autoimmune diseases, obesity, drug abuse, malingering, 
and depression [2]. Fortunately, most of these illnesses have characteristic clinical 
presentations often with confirmatory laboratory tests. 
 Yet there remain significantly fatigued patients where no underlying diagnosis 
can be securely established. In the past, such patients were often dismissed as having 
some form of uncertain psychiatric disorder – typically depression with symptoms of 
somatization. However, within this ‘unclassifiable’ but severely fatigued patient 
population a subset stood out with normal pre-morbid personalities and whose pre-
morbid lives were successful and fulfilling.  These patients, however, had suddenly 
become unusually fatigued after an undetermined illness and for whom the subsequent 
disabling weakness and fatigue endured for more than six months (often years) beyond 
the resolution of the initial illness. Some, but not all, patients would report intermittent 
lymphadenopathy and/or low grade fever often with corresponding worsening of their 
fatigue. Yet, no clear etiology could be found. The term Chronic Fatigue Syndrome 
(CFS) came to be applied to this group where a suspicion of organic etiology persisted 
but could not be confirmed [2, 3]. 
 Since common psychiatric disorders, particularly depression, often cause fatigue 
and since psychiatric diagnoses may be difficult to objectively and reliably confirm, 
many continued to reasonably wonder about the role of an as of yet identified form of 
depression as the cause of CFS. However, it was found that many patients with CFS 
suffer from co-existing psychiatric disorders only after becoming ill with CFS. Moreover, 
in 30-50% of patients no co-existing psychiatric disorders [4, 5] can be demonstrated. In 
addition, a carefully controlled trial of fluoxetine in patients with CFS failed to improve 
fatigue, even in those patients with a concomitant major depression [6]. 
 To better identify this perplexing patient population, the U.S. Centers for Disease 
Control (CDC) convened a group of experts to establish a set of strict diagnostic criteria 
for CFS. The resultant criteria have become known as the CDC or Fukuda criteria [3]. 
These criteria, available as a multi-page evaluation form, serve investigators and 
clinicians studying CFS to assure that their patient populations are well identified and 
comparable across studies. CFS is, therefore, not a synonym for prolonged, disabling 
fatigue although the distinction may be difficult upon initial evaluation. In this paper we 
use the term CFS to mean CDC-defined CFS. 
 CFS – which constitutes 0.5-2.5% of primary care referrals and 10-15% of tertiary 
care referrals for fatigue [1] – remains without confirmatory laboratory tests and can be 
difficult to distinguish from depression. Between 1 and 8 in 1000 U.S. adults meet the 
CDC criteria [7]. The CDC estimates that cost to the U.S. economy from lost productivity 
alone (not including medical care costs) is $9 billion annually [8]. 
 There exists published evidence that CFS may have its underpinnings in organic 
disease especially within the central nervous system (CNS), although not all studies have 
found such abnormalities. Studies of the CNS in CFS have included psychometric 
assessment of cognition [9, 10], magnetic resonance imaging [11-13], functional MRI 
[14, 15], in vivo MR spectroscopy [16, 17], single-photon emission computed 
tomography [18], positron emission tomography [19], neuroendocrine studies of 
hypothalamic function [20-22], and studies of the autonomic nervous system [23-25]. 

A link with infection and CFS also has been reported following infection with 
Epstein-Barr virus, Ross River virus , Coxiella burnetii [26], Borrelia burgdorferi [27], 
parvovirus B19 [28], human herpesvirus-6 [29], and enteroviruses [30]. Novel 
retroviruses may also be involved [31, 32] but that possibility has been challenged [33]. 
All these infectious agents have the potential to be CNS pathogens. The evidence of 
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neurologic involvement in CFS, and the possible role of infectious agents in triggering 
and perpetuating CFS, is summarized in a recent review [34]. 
 Symptoms suggesting the possibility of subtle encephalitis in CFS, along with the 
documented association of CFS with several neurotropic infectious agents, caused us to 
examine the role of electroencephalographic (EEG) studies in this illness. However, 
simple visual inspection of EEG has rarely provided valuable information in CFS, aside 
from allowing exclusion of epilepsy and classic encephalopathy. A study utilizing EEG 
Spectral Analysis [35] reported no significant differences of spectral power in any EEG 
frequency bands during sleep between subjects with CFS and their non-fatigued co-twins. 
Only studies requiring stressful conditions such as repetitive muscular exercise [36] and 
sleep deprivation [37] have documented EEG spectral difference in CFS. 
 Accordingly, we undertook an exploration of spectral coherence, a more complex 
computational derivative of EEG spectral data, which estimates connectivity between 
brain regions [38-40]. We hypothesized that results would, first, serve to confirm a 
consistent pattern of brain difference in CFS and, second, provide estimates of the 
potential for an EEG based diagnostic test for CFS.  

Methods 
 
Study Population 
 
 A total sample of 632 subjects was selected from an existing EEG database of 
patients referred to and studied at the Developmental Neurophysiology Laboratory, 
Children’s Hospital Boston. Subject groupings, total subjects per group, mean age plus 
standard deviation per group, and medication status at time of study are shown in Table 
1. 
 
Healthy Controls. A sample of 390 healthy control subjects, all of whom had participated 
in a large study of normative aging [41, 42], served as a control group. All subjects were 
of normal intelligence, medication free, and screened to exclude past or current medical, 
neurologic or psychiatric illness. No subject in this group had EEG findings to suggest an 
underlying seizure disorder or encephalopathic process. The healthy control subjects 
were divided into two sub-groups, females (n=197) and males (n=193).  
 
CFS Patients. Seventy patients, all of whom were referred for complaint of disabling 
fatigue, met the CDC criteria for CFS (the CFS group) [3]. All patients included in this 
group completed a standardized questionnaire and underwent physical examinations and 
a battery of laboratory tests to rule out other fatiguing illnesses, and all were classified as 
having CFS according to an algorithm based on these clinical and laboratory data. EEGs 
were obtained on patients who reported episodes of impaired cognition (characteristic of 
the vast majority of patients seen in this practice) and who agreed to undergo the 
procedure (most of those to whom the procedure was offered). None of the included CFS 
patients demonstrated clinical or EEG evidence of a seizure disorder. In order to assess 
the possible effect of psychoactive medications and gender on the EEG results, the 
subjects were divided into four sub-groups: unmedicated females (n=38), unmedicated 
males (n=9), medicated females (n=18), and medicated males (n=5). The CFS group was 
included to determine and evaluate differences between healthy control subjects and 
healthy CFS patients.  
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Depression Comparison Group. Twenty-four otherwise medically healthy patients met 
the DSM-IV criteria for major depression, diagnosed [43] by their referring psychiatrist, 
blinded to the goals of this study. Disabling fatigue is a characteristic of major depression 
[44]. All members of this population had been referred for EEG to rule out evidence for 
seizures and/or encephalopathy and no included patient had EEG evidence to support 
either diagnosis. These patients were similarly divided into four sub-groups by gender 
and medication: unmedicated females (n=10), unmedicated males (n=7), medicated 
females (n=4), and medicated males (n=3). This group of patients with major depression 
was included to determine whether a discriminant function developed to distinguish CFS 
from controls might incorrectly classify depressed patients as having CFS. 
 
Patients with Unspecified Fatigue. One-hundred and forty-eight subjects carried the 
primary complaint of prolonged fatigue of undetermined origin. They were all referred 
for EEG to rule out an underlying seizure disorder or encephalopathic process. We have 
no further information beyond the referring physician’s written diagnosis. Medication 
and health status was also determined by routine questionnaire at time of EEG study. 
Patients who indicated underlying medical disease, who did not confirm fatigue as a 
primary complaint, and/or with subsequent EEGs showing clear evidence of epilepsy or 
encephalopathy were excluded. The referring physicians had not rigorously evaluated 
these subjects by the CDC criteria, and thus it cannot be determined how many had the 
diagnosis of CFS. This population is most likely comprised of patients with CFS, 
depression, sleep disorders, and/or other undiagnosed illnesses. This group was similarly 
divided into unmedicated females (n=60), unmedicated males (n=17), medicated females 
(n=63), and medicated males (n=8). This group of patients with unspecified fatigue was 
included solely to assure adequacy of population variance in the large group of subjects 
used to develop coherence factors by principal components analysis (PCA) [45].  
 
Informed Consent.  All participants gave their informed consent in accordance with the 
protocols approved by the Institutional Review Boards for research with human subjects 
of the respective referring hospitals, the Brigham and Women’s Hospital (BWH), the 
Massachusetts General Hospital (MGH), and the Children’s Hospital Boston (CHB). All 
subjects were participants in one or more of the following four CHB protocols where 
EEGs were performed: Computerized Brain Wave Testing; Age Related Changes of 
Cognition in Health and Disease; Neurophysiology of CFS; QEEG Changes in Patients 
with CFS. 
 
 
Measurements and Data Analyses 
 

Methodological issues and solutions. Critiques of neurophysiological investigations 
typically focus on three potential, methodological sources of error: First, failure to 
stabilize subject state (e.g., waking, drowsy). Second, failure to remove or otherwise 
manage classic forms of EEG artifact (e.g., eye movement, eye blink, muscle) with 
failure to recognize that EEGs appearing clean by visual inspection may yet contain 
significant artifact [46]. Third, capitalization upon chance - applying statistical tests to 
too many variables and incorrectly reporting those that appear significant by chance as 
supporting the experimental hypothesis [45, 47-49]. We designed our methods to 
specifically address these key issues. 
 
EEG data collection: Artifact and state management at time of data collection.  EEG 
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data from all 632 subjects were obtained from 32 gold-cup scalp electrodes affixed by 
collodion after careful measurement by a registered EEG technologist. Electrode 
locations, shown in Figure 1, formed a subset of the standard 10-10 EEG electrode 
locations [50]. EEG data were gathered in the awake, alert, eyes closed state by an EEG 
technologist, naïve to study goals but specifically trained in the following protocol. 
Subjects were periodically aroused and given brief breaks either every 1-2 minutes or 
whenever drowsiness was evident in the EEG – whichever came first. Subjects were then 
instructed to open their eyes, blink frequently, and move to a comfortable position. Data 
collection subsequently resumed in the eyes closed state. Data were sampled at 256 Hz 
after filtering from 1-100 Hz using Grass™ EEG amplifiers, and digitally recorded for 
subsequent quantitative analyses. All amplifiers were individually calibrated prior to each 
study. At the end of the data collection, digitized EEG data were visually inspected by the 
EEG technologist and those EEG epochs during breaks or showing movement artifact, 
electrode artifact, eye blink storms, drowsiness, and/or bursts of muscle activity were 
visually identified and eliminated. In our experience expert visual identification of 
drowsiness has been found equal or superior to detection by automated detection 
algorithms [51]. EEGs were marked so that all channels during an artifact epoch would 
be excluded from subsequent analyses. After visual inspection, data were low pass 
filtered below 50 Hz with an additional 60 Hz mains rejection notch filter. Residual eye 
blink and eye movement artifacts, which may be surprisingly prominent even during the 
eyes closed state, were removed using the source component technique [52, 53] 
implemented in the BESA3.5™ software package. Visually, these combined techniques 
resulted in EEG data that appeared largely artifact free, with rare exceptions of low level 
temporal muscle artifact and residual frontal and anterior temporal slow eye movement, 
which remain capable of contaminating subsequent analyses. The final reduction of such 
residual contamination is discussed below.  
 
Calculation of Spectral Coherence Variables. Approximately 15 minutes of EEG 
collected and processed as noted above were transformed to Current Source Density 
measures (BESA software), a reference-free condition sensitive to underlying cortex and 
relatively insensitive to deep/remote EEG sources [54, 55]. Spectral coherence measures 
were derived from the 1-32 Hz range, in 16 two Hz wide spectral bands, resulting in 7936 
unique coherence variables. (NB: The 32 by 32 electrode matrix gives 1024 possible 
coherence values but the matrix diagonal has a value of 1 - each electrode to itself- and 
half of the 992 remaining values duplicate the other half, leaving 496 unique coherences 
per spectral band. Multiplication by the 16 spectral bands results in 7936 unique spectral 
coherence values per subject).  Coherence data calculation was performed as outlined by 
Saltzberg [38] using a Nicolet™ software package.   
 
Further artifact reduction by multivariate regression. Unfortunately, artifact cannot be 
removed from an entire EEG data set by direct elimination of electrodes and/or 
frequencies where a particular artifact may appear most easily seen. For example, 
although eye blink typically dominates low spectral frequencies in prefrontal regions, its 
non-sinusoidal waveform will generate harmonics at higher frequencies that will overlap 
with higher frequency spectral signals that are non-artifactual (brain generated). 
Furthermore, the spatial field of eye blink can also be expected to involve contamination 
of more distant electrodes. A similar argument applies to temporal-frontal muscle artifact. 
 A good approach to further reduce residual artifactual contamination of coherence 
data involves multivariate regression. Semliltsch has demonstrated [56] that by 
identifying a signal proportional to a known source of artifact, this signal’s contribution 
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to scalp recorded data may be effectively removed by statistical regression procedures. 
Residual vertical eye movement and blink produce slow EEG delta spectral signals in the 
frontopolar channels FP1 and FP2 which may be estimated by the average of the 0.5 and 
1.0 Hz spectral components from these channels after EEG spectral analysis by Fast 
Fourier Transform (FFT) [57]. Similarly, horizontal eye movement may be estimated by 
the average of the 0.5-1.0 Hz spectral components from anterior temporal electrodes F7 
and F8. Little meaningful information of brain origin is typically found at this slow 
frequency in the indicated channels in the absence of extreme pathology (e.g., brain 
tumors, trauma, and abscess). Muscle activity, in contrast, tends to peak at frequencies 
above those of current interest. Accordingly, 30-32 Hz FFT components were considered 
to be largely representative of muscle contamination, especially as recorded from the 
separate averages of prefrontal (FP1, FP2), anterior temporal (F7, F8), mid-temporal (T7, 
T8), and posterior temporal (P7, P8) electrodes. These electrodes are the most often 
contaminated by muscle as they are physically closest to the source of the artifact (frontal 
and temporal muscles). The six artifact measures, two very slow delta and four high 
frequency beta, were submitted as independent variables to a multiple regression analysis 
(BMDP2007™-6R) [58] used to individually predict each of the coherence variables (see 
below) treated as dependent variables.  The residuals of this process constitute coherence 
data that definitionally cannot be predicted by the artifact measures. By adding the 
residual data from each subject to the original neurophysiologic mean data, artifact free 
coherence measures were generated which are used for all subsequent analyses.  
 
Variable number reduction; creation of coherence factors.  Data for all electrodes and 
for all EEG frequencies produce a large variable number - 7936 for our study. To 
facilitate subsequent statistical analyses, we undertook Principal Components Analysis 
(PCA) as an objective technique to meaningfully reduce variable number [45]. Our 
coherence data were first normalized (centered and shifted to have unit variance) so that 
eventual factors reflect deviations from the average response.  To avoid loss of sensitivity 
by a priori data limitation, an ‘unrestricted’ form of PCA was applied [59] allowing all 
coherence variables per subject to enter analysis. By employment of an algorithm based 
upon singular value decomposition (SVD) [59], a data set of uncorrelated (orthogonal) 
principal components or factors [45, 59, 60] was developed in which the identification of 
a small number of factors (following Varimax rotation [61]) describe an acceptably large 
amount of variance [62]. Varimax rotation enhances factor contrast yielding higher 
loadings for fewer factors whilst retaining factor orthogonality and has become “…the 
most widely accepted and employed standard for orthogonal rotation of factors…” 
(p.145) [63]. Although not the only PCA method applicable to large, asymmetrical 
matrices (7936 variables by 632 cases as in the current study), SVD (which can be used 
to solve undetermined and over determined systems of linear equations [57]) is among 
the most efficient in our experience [59]. This approach to variable number reduction has 
been successfully used in a prior study of EEG spectral coherence in infants [59].  
 
Discriminating groups of subjects by use of EEG spectral coherence variables. Two-
group discriminant function analysis (DFA) [63-66] produces a new canonical variable, 
the discriminant function, which maximally separates the groups and is based on a 
weighted combination of the entered variables. DFA defines the significance of the group 
separation, summarizes the classification of each subject, and provides approaches to the 
prospective classification of subjects not involved in discriminant rule generation by 
means of the Jackknifing technique [67, 68] or by classification of entirely new 
populations. The BMDP2007™ statistical package [58] was employed for DFA (program 
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7M). Jackknifing is a technique often used in DFA to estimate prospective classification 
success [67, 68]. In Jackknifing - for two groups DFA as undertaken in this paper - the 
discriminant function is formed on all subjects but one. The left out subject is 
subsequently classified. This initial left out subject is then folded back into the group 
(hence “jackknifing”), another subject is left out, the DFA preformed again, and the 
newly left out subject classified. This process is repeated until each individual subject has 
been left out and classified. The measure of classification success is based upon a tally of 
the correct classifications of the left out subjects. This is frequently referred to as the 
leaving-one-out process. Alternatively, more than a single subject may be left out for 
each iteration which may be referred to as the leaving-many-out process. In our 
experience a more reliable estimate of prospective classification success results from a 
“leaving 20% out” test. For that reason, we used a random number generator within 
BMDP-4M (stepwise discriminant analysis) that permits random assignment of each 
subject to a training set (80% of the subjects, used to create the discriminant) and a test 
set (20% of the subjects, used to estimate prospective classification). (NB: The algorithm 
used by BMDP does not always provide a precise 80%/20% split and the ratio of control 
to experimental subjects within each selected sub-group reflect random chance.) We 
performed this exercise ten times.  
 
Factor description; relating PCA outcome factors to input coherence variables.  
Individual outcome factors are individually formed as linear combinations of all input 
variables with the weight or loading of each coherence variable upon a particular factor 
determined by the PCA computation [63]. As is the general case for PCA, the 
“meanings” of outcome factors may be discerned by inspection of the loadings of the 
input variables upon each individual factor [45, 63]. To facilitate an understanding of 
outcome factors for this study, where there are large number of input variables, the factor 
loadings were treated as if they were primary neurophysiologic data and displayed 
topographically [69, 70]. Display of a representative sample of the highest loading values 
has typically [71] served to facilitate an understanding of individual factor meaning as 
shown in Figure 2. 
 
 

Results  
 
Identification and Selection of Spectral Coherence Variables. Variance distribution 
among the resulting coherence factors was favorable:  2014 factors described over 99%, 
302 described 90.03%, 37 described 50.32%, 7 described 26.01% and 1 described 8.25% 
of the total variance. The first 40 factors - accounting for 55.64% of total variance - were 
chosen for analysis, exceeding Bartlett’s recommendation [72] and resulting in a 
conservative sample size to variable ratio of 235:40 or 6:1 [73] for the initial DFA 
described below. 
 
Discriminating Groups Using Spectral Coherence Variables. The primary discriminant 
analysis was based on the 197 unmedicated female controls and 38 unmedicated female 
CFS patients. Female subjects were chosen because in most case series and 
epidemiologic studies of CFS, females outnumber males [7]. 
When all 40 coherence factors were forced to enter the DFA, there was a highly 
significant (p<0.0004) group differentiation by Wilks’ Lambda, with Rao’s 
approximation. The unmedicated female CFS patients were identified with 89.5 % 
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accuracy and the female controls with comparable 92.4 % accuracy. Age did not 
significantly differ between these two groups. The statistically significant result, with all 
40 factors as variables forced to enter, establishes that these two groups differ on the 
basis of variables generated from EEG based coherence data. 
 Stepwise DFA was then utilized to identify a factor subset that best described the 
group difference. Ten factors (Figure 2, Table 2) entered the model resulting in a highly 
significant discrimination (p<.001) and equivalent classification success rate: 
unmedicated female controls 89.85%; unmedicated females with CFS 86.8%. Loadings 
of the 10 best factors (Table 2) determined to be useful in subsequent group 
discriminations are topographically displayed in Figure 2.  
 The results of the 10 jackknifing trials are shown in Table 3.  The average success 
for the ten trials is reported for the control (87.14%) and CFS females (86.2%). Each of 
these ten iterations generates a unique canonical discriminant variable for each test set 
member on the basis of the corresponding training set data. As a separate measure of 
classification success a 2-group analysis of variance (ANOVA) is performed for the 
discriminant variable on test set subjects (BMDP –7D). All of the 10 iterations reached 
significance, eight at or below the p<0.0003 level, one at the p<0.006 level and one at the 
p<0.02 level. 
 By both classification success and ANOVA, results were positive for use of 
spectral coherence data in prospective classification.  
 
Applying the Discriminant Function to Other Groups. The 10-factor discriminant 
function derived from the unmedicated female subjects was then tested on the other 
patient groups. Of note, 8 of the 9 (88.9%) unmedicated CFS males, whose data were not 
included in formation of the discriminant formation, were correctly classified.  
 The discriminant function was applied to male and female CFS subjects who were 
taking psychoactive medications. Although it performed considerably better than chance, 
the discriminant performed less well than it had with unmedicated subjects: 14/18 
(77.8%) of medicated female CFS patients and 3/5 (60%) of medicated male CFS 
patients were accurately classified. 
 For patients with unspecified fatigue whether medicated or unmedicated, 46.6% 
were assigned to the CFS classification. As the true diagnosis of these subjects is not 
known, accuracy of the classification cannot be inferred. 
 Finally, when the discriminant function was applied to all four subgroups of the 
24 patients with major depression, none of the depressed patients were falsely classified 
as having CFS. 
 
Characteristics of Coherence Variable Differences between CFS and Normal Subjects. 
There was no clear predominant side (right vs. left) or EEG spectral band involved in the 
10 factors that were the best discriminators.  However, there were clear differences in the 
brain regions involved in the ten most discriminating coherence factors, as follows: 
Temporal region (9/10), central (8/10), frontal (5/10), occipital (3/10), and parietal (1/10) 
region. (Figure 2) 
 
 

Discussion  
 
 The first goal of this study was to explore meaningful reduction, by principal 
components analysis (PCA), of a large data set of artifact-free EEG spectral coherence 
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data created from an adult population containing healthy controls and patients with CFS, 
major depression, and unspecified severe fatigue. Coherence is taken to represent the 
degree of functional connectivity or coupling between two different brain regions at a 
chosen frequency. 

The second goal was to explore the utility of the PCA-reduced data set in 
differentiating CFS patients from normal subjects without falsely classifying depressed 
patients as having CFS. Many studies have found evidence of nervous system 
involvement in CFS, but no large, controlled investigations of the value of EEG spectral 
coherence in patients with CFS had been reported. Spectral coherence has proven useful 
in conditions where standard EEG is seldom found to be diagnostic [59, 71, 74, 75].  
 
First goal, creation of artifact free coherence factors by PCA. Utilizing the full subject 
population(Table 1, n=632) we were successful in reducing the initial 7936 coherence 
variables per subject to 40 orthogonal (uncorrelated) factors per subject which described 
55.6% of the total, initial variance. In other words, PCA condensed over half the 
information (variance) contained in the initial 7936 variables into just 40 new variables 
(outcome factors). One benefit of this almost 7936:40 or 200 fold reduction in data 
dimensionality over the entire population is a parallel reduction in the likelihood for 
capitalization on chance of the sort that may occur during subsequent statistical analyses 
when they involve large numbers of variables [48]. An additional benefit to this ‘hands-
off’ data reduction is that it requires no advance or a priori coherence variable selection 
by the investigators, eliminating any possible variable selection bias. Bartels refers to this 
as allowing the intrinsic data structure of the population to select variables [45]. 
 In utilizing this PCA based approach, it is important to include all subjects in the 
initial PCA, even including subjects with related but not completely defined clinical 
diagnoses – in our case medicated patients and generally fatigued patients with 
incomplete diagnoses. Among-subject variance within the population is responsible for 
factor formation. For instance, had factor formation been limited to healthy normal 
control subjects exclusively, the degree of variance introduced by fatigue, depression and 
medications would have, therefore, been absent and factors potentially important to group 
separation might never have been formed.  
 Finally, the data underwent an initial multiphase artifact control process (see 
Methods) performed across the entire population. It is highly unlikely that the final, 
processed coherence data contained significant eye movement or muscle contamination. 
Indeed prior to PCA, the coherence data were processed so as to be uncorrelated with six 
classic measures of eye and muscle artifact. Thus it is unlikely that our study findings 
reflect artifactual group differences. 
 Finally, subject selection for the primary study groups (healthy controls, CFS, 
depression) was rigorous and performed by clinical experts in their fields on the basis of 
standardized, published criteria. This will facilitate replication including sample selection 
for future studies here and/or elsewhere.  
 
Second goal, differentiating CFS patients from healthy controls. Our study findings 
indicate that EEG spectral coherence data, recorded in the waking eyes closed state, 
differ significantly between healthy control female subjects and otherwise healthy female 
patients with CDC-defined CFS. Our 40 coherence factors, significantly separated these 
two index subject groups at p<0.001. This fundamental finding indicates that CFS 
patients manifest patterns of functional brain coupling that differ from those of normal 
controls. Such a difference of CFS brain physiology may help explain known differences 
in cognition, memory, sleep, and affect that afflict CFS patients (see Background). 
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 We also found that a small subset of as few as 10 coherence factors were able to 
accurately identify (by stepwise discriminant analysis) these same unmedicated female 
subjects (CFS  86.8% accuracy, control 89.8% accuracy). When the rules generated by 
this analysis on unmedicated females were prospectively applied to unmedicated CFS 
males and healthy control males who were not involved in the discriminant function 
creation, true prospective classification accuracy remained high (CFS 88.9%, control 
82.4%). In addition, when the classification rules were applied to the entire depressed 
population, none were falsely, prospectively, classified as having CFS. 
 Jackknifed classification techniques, employed to provide estimates for the 
prospective success rate for application of the discriminant rules to new sets of 
unmedicated female subjects (CFS and normal), was successful.  By a re-iterative leaving 
20% out processes, accuracy for controls was 87.1% and for CFS was 86.2%, (Table 3). 
Thus the discriminant should prove effective on entirely new samples. However, that 
hypothesis must be tested on a large, new set of patients with CFS and comparison 
groups (healthy and with other fatiguing illnesses) to assure the accuracy and utility of 
EEG spectral coherence as a diagnostic aid.  
 
Speculations. The less than 100% accuracy of our spectral coherence based classification 
function could reflect a deficiency in the CDC criteria for CFS, and/or a deficiency in the 
coherence-based discriminant itself, and/or unexplored physiological variability even 
within carefully CDC-defined CFS. For example, multiple etiologic agents have been 
identified as potential triggers of the CFS phenotype [26], each with the potential for a 
slightly differing impact upon the central nervous system (CNS) and, hence, on EEG 
spectral coherence.  The possibility of sub-grouping [76] CFS on the basis of coherence 
and other objective CNS measures (e.g., MRI, SPECT/PET, neuropsychology) may be a 
fruitful area for further exploration. Subgrouping could result in a broader set of 
objectively derived CNS measures from neurophysiology and other neuroimaging 
techniques that might eventually become the diagnostic ‘gold standard’ for CFS. 
 When applied to patients with CFS who were taking psychoactive medications at 
the time of testing, the 10-factor model was less accurate (females, 77.8% accuracy; 
males, 60.0% accuracy). Since psychoactive medications directly affect the brain, the 
organ being examined by EEG, it is possible that these medications may modify EEG 
measures such that their accuracy is compromised. Alternatively, these medications may 
have had a therapeutic clinical effect on brain function (connectivity), thus causing some 
CFS patients to electrophysiologically resemble normal controls. Supporting this 
hypothesis is the observation that some patients were tested while on psychoactive 
medications because they refused to discontinue them being convinced from past 
experiences that this might worsen their clinical condition. Thus another fruitful area for 
further exploration is to determine if EEG spectral coherence is a useful index measure in 
assessing medication treatment response.  
 Given a lack of detailed clinical information, it is not possible to determine 
classification accuracy within our Unspecified Fatigue population. When the 10 
coherence factor discriminant is applied to this group 46.6% are classified as CFS. This is 
broadly consistent with the published estimate that the prevalence of true CFS among 
patients seeking care from tertiary specialists for prolonged fatigue can be as high as 35% 
[1]. 
 The finding of bilateral temporal lobe involvement in 9 of 10 factors is of 
potential clinical significance. The 10 coherence factors did not collectively localize to 
any other single brain region. This greater temporal lobe involvement is consistent with 
the global memory impairment in CFS reported by Marcel [9] and Daly [77]. It is also 
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interesting that one neurotropic virus associated with CFS, human herpesvirus-6, appears 
to selectively affect the temporal lobes and has recently been associated with temporal 
lobe seizure disorders [78-80].  
 
Future plans. Our immediate plans call for enlarging our population to prospectively test 
and refine current findings. This will primarily involve recruiting additional patients with 
depression and non-CFS prolonged fatigue as well as additional patients with CDC-
defined CFS - especially males. All patients will have equivalent evaluations: clinical and 
behavioral as well and neurophysiological. We plan to evaluate a population of CFS 
patients before and after beginning medications. We also hope to develop specific 
classification rules to separate four diagnostic groups: CFS, non-CFS prolonged fatigue, 
depression, and healthy controls. We plan to search for CFS-gender interactions. All this 
will require substantially larger populations than now available to us. Finally, within the 
CFS population we will employ cluster analysis, as successfully applied by Montironi 
and Bartels [76] in another research area, to search for consistent CFS subpopulations.  

Conclusions  
 EEG-derived spectral coherence factors accurately classify unmedicated subjects 
with rigorously-defined CFS, and reliably distinguish them from matched healthy control 
subjects, while at the same time not falsely classifying depressed patients as having CFS. 
This finding is in accord with other objective evidence that CFS is associated with 
organic, brain-based pathophysiology [34].  The discriminant function based on the 
identified coherence factors is less successful in patients on psychoactive medications, 
which might reflect a palliative effect of the medications. EEG coherence measures, 
perhaps in combination with other neuroimaging data, may ultimately prove to provide a 
valuable diagnostic test for CFS as well as an objective means to evaluate potential CFS 
therapies.  
 

Competing interests 
The authors declare that they have no competing interests. 

Authors' contributions 

The authors' contributions included the following: study concept and design, F. Duffy, G. 
McAnulty and A. Komaroff; acquisition of patients, A. Komaroff and G. Cuchural; 
acquisition of the patient data, A. Komaroff,  M. McCreary, F. Duffy, G. McAnulty and 
G. Cuchural; preparation of neurophysiologic data, F. Duffy and M. McCreary; analysis 
and interpretation of the data, F. Duffy, G. McAnulty and A. Komaroff; and statistical 
analysis; drafting and revision of the manuscript, F. Duffy, G. McAnulty, A. Komaroff 
and M. McCreary. F. Duffy had full access to all the data in the study and takes 
responsibility for the integrity of the data and the accuracy of the data analysis. All 
authors read and approved the final manuscript. 

Acknowledgements and Funding 
The authors thank registered EEG technologists Ellen Belles, Jack Connolly, Vincent 
DaForno, Herman Edwards, Susan Katz, Sheryl Manganaro, Marianne McGaffigan, and 
Adele Mirabella for the quality of their work and for their consistent efforts over the 
years. The authors also wish to thank Christopher Suarez for administrative and technical 
support for manuscript preparation and submission.  These individuals so acknowledged 



 - 13 - 

performed their roles as part of regular duties and were not additionally compensated for 
their contribution. 
 
 The authors specially thank Marilyn Albert, PhD (Johns Hopkins University) for 
contribution of normal healthy control subjects, Allan Shatzberg, MD (Stanford 
University) for contribution of the patients with major depression, and Kenneth Jones, 
PhD (Brandeis University), author of the specialized PCA software used herein. None 
received compensation for their contribution to this manuscript. 
 
 This work was supported in part by National Institutes on Aging program project 
PO1AG049853 to M. Albert; National Institute of Neurological Diseases and Stroke 
grant NS1367 to F.H. Duffy; National Institute of Child Health and Human Development 
grant HD13420 to F.H. Duffy, the Mental Retardation Program Project P30HD18655; 
and by a gift from the De Young Foundation. 
 
 

References 
1. Loblay R, Stewart G, Bertouch J: Chronic fatigue syndrome: Clinical 

practice guidelines-2002. Med J Aust 2002, 176:S23-56. 
2. Craig T, Kakumanu S: Chronic fatigue syndrome: Evaluation and 

treatment. Am Fam Physician 2002, 65:1082-1091. 
3. Fukuda K, Straus SE, Hickie I, Sharpe MC, Dobbins JG, Komaroff A: The 

chronic fatigue syndrome: A comprehensive approach to its definition 

and study. Ann Intern Med 1994, 121:953-959. 
4. Wessely S, Powell R: Fatigue syndromes: A comparison of chronic 

"postviral" fatigue with neuromuscular and affective disorders. J Neurol 

Neurosurg Psychiat 1989, 52:940-948. 
5. Hickie I, Lloyd A, Wakefield D, Parker G: The psychiatric status of patients 

with the chronic fatigue syndrome. Br J Psychiatry 1990, 156:534-540. 
6. Vercoulen JH, Swanink CM, Zitman FG, Vreden SG, Hoofs MP, Fennis JF, 

Galama JM, van der Meer JW, Bleijenberg G: Randomised, double-blind, 

placebo-controlled study of fluoxetine in chronic fatigue syndrome. Lancet 

1996, 347:858-861. 
7. Reyes M, Nisenbaum R, Hoaglin DC, Unger ER, Emmons C, Randall B, 

Stewart JA, Abbey S, Jones JF, Gantz N, Minden S, Reeves WC: Prevalence 

and incidence of chronic fatigue syndrome in Wichita, Kansas. Arch Intern 

Med 2003, 163:1530-1536. 
8. Reynolds CR, Kamphaus RW: BASC-II: Behavior Assessment System for 

Children, Second Edition. AGS Publishing; 2004. 
9. Marcel B, Komaroff AL, Fagioli LR, Kornish RJ, Albert MS: Cognitive 

deficits in patients with chronic fatigue syndrome. Biol Psychiatry 1996, 
40:535-541. 

10. DeLuca J, Christodoulou C, Diamond BJ, Rosenstein ED, Kramer N, Natelson 
BH: Working memory deficits in chronic fatigue syndrome: 

differentiating between speed and accuracy of information processing. J 

Int Neuropsychol Soc 2004, 10:101-109. 
11. Buchwald D, Cheney PR, Peterson DL, Henry B, Wormsley SB, Geiger A, 

Ablashi DV, Salahuddin Z, Saxinger C, Biddle R, Kikinis R, Jolesz FA, Folks 
T, Blalchandran N, Peter JB, Gallo RC, Komaroff AL: A chronic illness 

characterized by fatigue, neurologic and immunologic disorders, and 



 - 14 - 

active human herpesvirus type 6 infection. Ann Intern Med 1992, 116:103-
113. 

12. de Lange FP, Kalkman JS, Bleijenberg G, Hagoort P, van der Meer JWM, 
Toni I: Gray matter volume reduction in the chronic fatigue syndrome. 
Neuroimage 2005, 26:777-781. 

13. Cook DB, Lange G, DeLuca J, Natelson BH: Relationship of brain MRI 

abnormalities and physical functional status in chronic fatigue syndrome. 
Intern J Neurosci 2001, 107:1-6. 

14. Tanaka M, Sadato N, Okada T, Mizuno K, Sasabe T, Tanabe HC, Saito DN, 
Onoe H, Kuratsune H, Watanabe Y: Reduced responsiveness is an essential 

feature of chronic fatigue syndrome: a fMRI study. BMC Neurol 2006, 6:9. 
15. de Lange FP, Kalkman JS, Bleijenberg G, Hagoort P, van der Werf SP, van 

der Meer JW, Toni I: Neural correlates of the chronic fatigue syndrome--

an fMRI study. Brain 2004, 127:1948-1957. 
16. Cox IJ, Puri BK: In vivo MR spectroscopy in diagnosis and research of 

neuropsychiatric disorders. Prostaglandins Leukot Essent Fatty Acids 2004, 
70:357-360. 

17. Matthew S, Mao X, Keegan K, Levine S, Smith E, Heier L, Otcheretko V, 
Coplan J, Shungu D: Ventricular cerebrospinal fluid lactate is increased in 

chronic fatigue syndrome compared to generalized anxiety disorder: an in 

vivo NMR Biomed 2009, 22:251-258. 
18. Schwartz RB, Komaroff AL, Garada BM, Gleit M, Doolittle TH, Bates DW, 

Vasile RG, Holman BL: SPECT imaging of the brain: Comparison of 

findings in patients with chronic fatigue syndrome, AIDS dementia 

complex, and major unipolar depression. AJR Am J Roentgenol 1994, 
162:943-951. 

19. Cleare AJ, Messa C, Rabiner EA, Grasby PM: Brain 5-HT1A receptor 

binding in chronic fatigue syndrome measured using positron emission 

tomography and [11C]WAY-100635. Biol Psychiatry 2005, 57:239-246. 
20. Demitrack MA, Dale JK, Straus SE, Laue L, Listwak SJ, Kruesi MJ, Chrousos 

GP, Gold PW: Evidence for impaired activation of the hypothalamic-

pituitary-adrenal axis in patients with chronic fatigue syndrome. J Clin 

Endocrinol Metab 1991, 73:1224-1234. 
21. Hollomon H, Scott KG: Influence of birth weight on educational outcomes 

at age 9: The Miami site of the infant health and development program. J 

Dev Behav Pediatr 1998, 19:404-410. 
22. Cleare AJ, Bearn J, Allain T, McGregor A, Wessely S, Murray RM, O'Keane 

V: Contrasting neuroendocrine responses in depression and chronic 

fatigue syndrome. J Affect Disord 1995, 34:283-289. 
23. Bou-Holaigah I, Rowe PC, Kan J, Calkins H: The relationship between 

neurally mediated hypotension and the chronic fatigue syndrome. JAMA 

1995, 274:961-967. 
24. Naschitz JE, Sabo E, Naschitz S, Rosner I, Rozenbaum M, Fields M, Isseroff 

H, Priselac RM, Gaitini L, Eldar S, Zukerman E, Yeshurun D: 
Hemodynamics instability score in chronic fatigue syndrome and in non-

chronic fatigue syndrome. Semin Arthritis Rheum 2002, 32:141-148. 
25. Naschitz JE, Sabo E, Naschitz S, Rosner I, Rozenbaum M, Priselac RM, 

Gaitini L, Zukerman E, Yeshurun D: Fractal analysis and recurrence 

quantification analysis of heart rate and pulse transit time for diagnosing 

chronic fatigue syndrome. Clin Auton Res 2002, 12:264-272. 



 - 15 - 

26. Hickie I, Davenport T, Wakefield D, Vollmer-Conna U, Cameron B, Vernon 
SD, Reeves WC, Lloyd A, Group DIOS: Post-infective and chronic fatigue 

syndromes precipitated by viral and non-viral pathogens: prospective 

cohort study. BMJ 2006, 333:575. 
27. Dinerman H, Steere AC: Lyme disease associated with fibromyalgia. Ann 

Intern Med 1992, 117:281-285. 
28. Kerr JR, Bracewell J, Laing I, Mattey DL, Bernstein RM, Bruce IN, Tyrrell 

DA: Chronic fatigue syndrome and arthralgia following parvovirus B19 

infection. J Rheumatol 2002, 29:595-602. 
29. Komaroff AL: Is human herpesvirus-6 a trigger for chronic fatigue 

syndrome? J Clin Virol 2006, 37:S39-S46. 
30. Chia JK, Chia AY: Chronic fatigue syndrome is associated with chronic 

enterovirus infection of the stomach. J Clin Pathol 2008, 61:43-48. 
31. Lombardi VC, Ruscetti FW, Gupta JD, Pfost MA, Hagen KS, Peterson DL, 

Ruscetti SK, Bagni RK, Petrow-Sadowski C, Gold B, Dean M, Silverman RH, 
Mikovits JA: Detection of infectious retrovirus, XMRV, in blood cells of 

patients with chronic fatigue syndrome. Science 2009, 326:585-589. 
32. Lo S-C, Pripuzova N, Li B, Komaroff AL, Hung GC, Wang R, Alter HJ: 

Detection of MLV-related gene sequences in blood of patients with 

chronic fatigue syndrome and healthy blood donors. Proc Natl Acad Sci 

2010, 107:15874-15879. 
33. Knox K, Carrigan D, Simmons G, Teque F, Zhou Y, Hackett J, Qiu X, Lik K, 

Schochetman G, Knox A, Kogelnik AM, Levy JA: No evidence of murine-

like gammaretroviruses in CFS patients previously identified as XMRV-

infected.  Science 2011. 
34. Komaroff AL, Cho TA: Role of infection in neurologic dysfunction and 

chronic fatigue syndrome. Seminars in Neurology 2011:(in press). 
35. Armitage R, Landis C, Hoffmann R, Lentz M, Watson NF, Goldberg J, 

Buchwald D: Power spectral analysis of sleep EEG in twins discordant for 

chronic fatigue syndrome. J Psychosom Res 2009, 66:51-57. 
36. Siemionow V, Fang Y, Calabrese L, Sahgal V, Yue GH: Altered central 

nervous system signal during motor performance in chronic fatigue 

syndrome. Clin Neurophysiol 2004, 115:2373-2381. 
37. Armitage R, Landis C, Hoffmann R, Lentz M, Watson NF, Goldberg J, 

Buchwald D: The impact of a 4-hour sleep delay on slow wave activity inb 

twins discordant for chronic fatigue syndrome. Sleep 2007, 30:657-662. 
38. Saltzberg B, Burton WD, Burch NR, Fletcher J, Michaels R: 

Electrophysiological measures of regional neural interactive coupling. 

Linear and non-linear dependence relationships among multiple channel 

electroencephalographic recordings. Int J Biomed Comput 1986, 18:77-87. 
39. Walter DO: Coherence as a measure of relationship between EEG records. 

Electroencephalogr Clin Neurophysiol 1968, 24:282. 
40. Math Works I: Signal Processing Toolbox. Natick, MA: Math Works, Inc.; 

1998. 
41. Duffy FH, Albert MS, McAnulty G: Brain electrical activity in patients 

with presenile and senile dementia of the Alzheimer's type. Ann Neurol 

1984, 16:439-448. 
42. Duffy FH, McAnulty GB, Jones K, Als H, Albert M: Brain electrical 

correlates of psychological measures: strategies and problems. Brain 

Topogr 1993, 5:399-412. 



 - 16 - 

43. Hedlung JL, Vieweg BW: The Hamilton rating scale for depression; a 

comprehensive review. J Operational Psychiatry 1979, 10:149-165. 
44. Fuhrer R, Wesseley S: The epidemiology of fatigue and depression: a 

French primary-care study. Psychological Medicine 1995, 25:895-904. 
45. Bartels PH: Numerical evaluation of cytologic data. IX. Search for data 

structure by principal components transformation. Anal Quant Cytol 1981, 
3:167-177. 

46. Duffy F, Jones K, Bartels P, McAnulty G, Albert M: Unrestricted principal 

components analysis of brain electrical activity: Issues of data 

dimensionality, artifact, and utility. Brain Topogr 1992, 4:291-307. 
47. Abt K: Problems of repeated significance testing. Controlled Clinical Trials 

1981, 1:377-381. 
48. Abt K: Significance testing of many variables - Problems and solutions. 

Neuropsychobiol 1983, 9:47-51. 
49. Duffy FH: Clinical decision making in quantified electroencephalographic 

analysis. In Statistics and Topography in Quantitative EEG. Edited by 
Samson-Dollfus D, Gotman J, Guieu JD, Etevenon P. Paris: Elsevier; 1988: 9-
26. 

50. American Clinical Neurophysiology Society: Guideline 5: Guidelines For 

Standard Electrode Position Nomenclature. J Clin Neurophysiol 2006, 23: 
107-110. 

 51. Gevins AS, Zeitlin GM, Ancoli S, Yeager CL: Computer rejection of 

artifact. II. Contamination by drowsiness. Electroencephalogr Clin 

Neurophysiol 1977, 43:31-42. 
52. Lins OG, Picton TW, Berg P, Scherg M: Ocular artifacts in recording EEGs 

and event-related potentials. II: Source dipoles and source components. 
Brain Topogr 1993, 6:65-78. 

53. Berg P, Scherg M: Dipole modeling of eye activity and its application to 

the removal of eye artifacts from EEG and MEG. Clin Phys Physiol Meas 

1991, 12 Suppl A:49-54. 
54. Nunez PL: Electric Fields of the Brain. New York: Oxford University Press; 

1981. 
55. Nunez PL, Pilgreen KL: The spline-Laplacian in clinical neurophysiology: 

A method to improve EEG spatial resolution. J Clin Neurophysiol 1991, 
8:397-413. 

56. Semlitsch HV, Anderer P, Schuster P, Presslich O: A solution for reliable 

and valid reduction of ocular artifacts, applied to the P300 ERP. 
Psychophysiology 1986, 23:695-703. 

57. Press WH, Teukolsky SA, Vetterling WT, Flannery BP: Numerical Recipes in 

C; The Art of Scientific Computing, 2nd Edition. Cambridge, England: 
Cambridge University Press; 1995. 

58. Dixon WJ: BMDP Statistical Software Manual. Berkeley: University of 
California Press; 1988. 

59. Duffy FH, Jones KH, McAnulty GB, Albert MS: Spectral coherence in 

normal adults: Unrestricted principal components analysis - relation of 

factors to age, gender, and neuropsychologic data. Clin Electroencephalogr 

1995, 26:30-46. 
60. Duffy F, Bartels P, Burchfiel J: Significance probability mapping: An aid in 

the topographic analysis of brain electrical activity. Electroencephalogr 

Clin Neurophysiol 1981, 51:455-462. 



 - 17 - 

61. Kaiser HJ: A Varimax criterion for analytic rotation in factor analysis. 
Psychometrika 1958, 23:187-200. 

62. Golub GH: Matrix Computations. 2 edn. Baltimore, MD: Johns Hopkins 
University Press; 1989. 

63. Cooley WW, Lohnes PR: Multivariate Data Analysis. New York: J. Wiley and 
Sons; 1971. 

64. Bartels PH: Numerical evaluation of cytologic data IV. Discrimination and 

classification. Anal Quant Cytol 1980, 2:19-24. 
65. Marascuilo LA, Levin JR: Multivariate Statistics in the Social Sciences, A 

Researchers Guide. Monterey, CA: Brooks/Cole Publishing Co.; 1983. 
66. Whitfield MF, Grunau RE: Behavior, pain perception, and the extremely 

low-birth weight survivor. Clinics In Perinatology 2000, 27:363-379. 
67. Lachenbruch P, Mickey RM: Estimation of error rates in discriminant 

analysis. Technometrics 1968, 10:1-11. 
68. Lachenbruch PA: Discriminant Analysis. New York: Hafner Press; 1975. 
69. Duffy FH: Brain electrical activity mapping (BEAM): Computerized 

access to complex brain function. Int J Neurosci 1981, 13:55-65. 
70. Duffy FH, Bartels PH, Burchfiel JL: Significance probability mapping: an 

aid in the topographic analysis of brain electrical activity. 
Electroencephalogr Clin Neurophysiol 1981, 51:455-462. 

71. Duffy FH, Als H, McAnulty GB: Infant EEG spectral coherence data 

during quiet sleep:  Unrestricted Principal Components Analysis - 

Relation of factors to gestational age, medical risk, and neurobehavioral 

status. Clin Electroencephalogr 2003, 34:54-69. 
72. Bartlett MS: Tests of significance in factor analysis. Brit J of Stat Psychol 

1950, 3:77-85. 
73. Foley DH: Consideration of sample and feature size. IEEE Trans Inform 

Theory 1972, IT-18:618-626. 
74. Leuchter AF, Newton TF, Cook IA, Walter DO, Rosenberg-Thompson S, 

Lachenbruch PA: Changes in brain functional connectivity in Alzheimer's-

type and multi-infarct dementia. Brain 1992, 115:1543-1561. 
75. Thatcher RW, Walker RA, Gerson I, Geisler FH: EEG discriminant analysis 

of mild head trauma. Electroenceph Clin Neurophysiol 1989, 73:94-106. 
76. Montironi R, Scarpelli M, Lopez-Beltran A, Mazzucchelli R, Alberts D, 

Ranger-Moore J, Bartels HG, Hamilton PW, Einspahr J, Bartels PH: 
Chromatin phenotype karyometry can predict recurrence in papillary 

erothelial neoplasms of low malignant potential. Cellular Oncol 2007, 
29:47-58. 

77. Daly E, Komaroff AL, Bloomingdale K, Wilson S, Albert MS: 
Neuropsychological function in patients with chronic fatigue syndrome, 

multiple sclerosis, and depression. Appl Neuropsychol 2001, 8:12-22. 
78. Donati D, Akhyani N, Fogdell-Hahn A, Cermelli C, Cassiani-Ingoni R, 

Vortmeyer A, Heiss JD, Cogen P, Gaillard WD, Sato S, Theodore WH, 
Jacobson S: Detection of human herpesvirus-6 in mesial temporal lobe 

epilepsy surgical brain resections. Neurology 2003, 61:1405-1411. 
79. Donati D, Fotheringham J, Akhyani N, Fogdell-Hahn A, Vortmeyer A, Heiss 

JD, Williams E, Weinstein S, Bruce DA, Bonwetsch R, Gaillard WD, Sato S, 
Theodore WH, Jacobson, S: HHV-6 and mesial temporal lobe epilepsy: 

detection of viral DNA and antigen in brain tissue primary cultured 

astrocytes and implication for a viral role in pathogenesis J Clin Virol 



 - 18 - 

2006, 37 Suppl 1:S115-S116. 
80. Fotheringham J, Donati D, Akhyani N, Fogdell-Hahn A, Vortmeyer A, Heiss 

JD, Williams E, Weinstein S, Bruce DA, Gaillard WD, Sato S, Theodore, WH, 
Jacobson S: Association of human herpesvirus-6B with mesial temporal 

lobe epilepsy. PLoS Med 2007, 4:e180. 
 
 

Figures 

Figure 1 - Standard EEG Electrode Names and Positions 

 
Legend: Head in vertex view, nose above, left ear to left. EEG electrodes: Z: Midline: 
FZ: Midline Frontal; CZ: Midline Central; PZ: Midline Parietal; OZ: Midline Occipital. 
Even numbers, right hemisphere locations; odd numbers, left hemisphere locations: Fp: 
Frontopolar; F: Frontal; C: Central; T: Temporal; P: Parietal; O: Occipital.  
The standard 19, 10-20 electrodes are shown as black circles. An additional subset of 
17, 10-10 electrodes are shown as open circles. 

 
 
Figure 2 -   Graphic Representation of 10 Coherence Factor Loadings 
 
Legend: EEG coherence factor loadings. Heads in top view, scalp left to image left; 
index electrode above heads and frequency range in Hz below. Region-Colors: Location, 
magnitude, and sign (red=positive; blue=negative) of maximally loading coherence on 
factor. Arrow-Colors: Direction of association indicated by arrow (red=increased 
coherence in CFS; yellow =decreased coherence in CFS) 
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Tables 
 

Table 1. Patient Subgroups  
Unmedicated (Total n = 531)   
Category Total Mean Age (SD) 
Control Females 
Control Males 
Chronic Fatigue Syndrome Females 
Chronic Fatigue Syndrome Males 
Depressed Females 
Depressed Males 
Fatigued Females 
Fatigued Males 

197  
193  
38  
9  

10  
7 

60  
17  

46.5 (18.6) 
44.3 (18.2) 
42.2 (10.6) 
38.6 (11.4) 
45.8 (17.6) 

  47.2 (11.0) 
  41.8   (9.3) 
  39.7   (8.6) 

Medicated (Total n = 101)   
Category Total Mean Age (SD) 
Chronic Fatigue Syndrome Females 
Chronic Fatigue Syndrome Males 
Depressed Females 
Depressed Males 
Fatigued Females 
Fatigued Males 

18 
5 
4 
3 
63 
8 

43.3 (13.6) 
32.3 (12.4) 
37.5 (24.3) 
33.9 ( 5.4) 
41.6 (11.6) 
32.3 (16.2) 

 

Subject Cohort: numbers per group, mean ages (SD = standard deviation). 
Controls = Unmedicated, normal control subjects, healthy by physician evaluation, 
CFS = Patients meeting CDC criteria for chronic fatigue syndrome, otherwise healthy 
Fatigue = Referred patients with non-specific fatigue, CFS status unknown, otherwise 
healthy 
Depression = Physician referred DSM-IV criteria for depression, otherwise healthy. 
 
 

Table 2.  Coherence Loadings on 10 Best Coherence Factors  
 
Factor Loading Range (Hz) EEG Electrodes Involved 
1 
 
 
2 
3 
19 
27 
 
21 
 
 
 
24 
28 
37 
20 

+0.91 
 
 

+0.82 
-0.80 
-0.64 
+0.61 

 
-0.61 

 
 
 

+0.58 
+0.57 
+0.55 
-0.35 

2-6 
2-6 
2-6 
24-28 
20-26 
18-28 
6 
6 
4-10 
4-10 
14-26 
14-26 
8 
2-8 
14-24 
8-12 

OZ �� FT9, F7, FP1 
O1 �� FT9, F7, FP1 
O2 �� FT9, F7, FP1 
OZ �� T7, FC5, F3, C3 
T8 �� FC6, CP6 
F3 �� CP5, FC5, FC1, CP2 
T7 �� P7, FC6, T8, CP6 
T8 �� FC5, T7, CP5, P7 
C3�� FC5, FC2, C4, T8, F8 
C4 �� C3, FC5, F8 
C3 �� C4, T8, F8 
C4 �� C3, T7 
F4 �� F3, P7, TP9, CP2, P8, TP10 
T7 �� FC1, C3, CP1 
P4 �� CZ, CP1, O2, P8 
FC1�� CP1, F7, FP1, FP2 

 
Legend 
See Figure 1 for scalp location of indicated electrodes. 
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Table 3. Recursive Jackknifing by Leaving 20% Out: 
  Test Set Classification Accuracy 

 
 
Legend 
One-Way Analysis of Variance (F); 2-tailed.  Results are number and percent correctly 
classified of Test Set, df = degrees of freedom, p= probability value 

 
    Trial 

 
Control 

   % 
Correct 

 
CFS 

   % 
   Correct 

 
df 

 
   F 

 
    p 

1 35/41 85.36 8/9 88.89 1,14 38.09 0.0000 
2 34/38 89.47 5/5 100.00 1,5 20.42 0.0063 
3 32/39 82.05 9/10 90.00 1,19 39.66 0.0000 
4 36/41 87.80 8/9 88.89 1,11 41.38 0.0000 
5 37/41 90.24 5/6 83.33 1,6 9.17 0.0232 
6 35/39 89.74 8/10 80.00 1,14 22.51 0.0003 
7 33/43 76.74 8/9 88.89 1,14 29.51 0.0001 
8 41/47 87.23 7/9 77.78 1,11 29.89 0.0002 
9 40/44 90.90 11/14 78.57 1,28 51.75 0.0000 

10 36/39 92.31 6/7 85.71 1,10 43.47 0.0001 
Mean  87.14  86.21    



Figure 1



Figure 2
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